

X-CON BRAND

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

PRODUCT SPECIFICATION

規格書

CUSTOMER: DATE:

(客戶): 志盛翔 (日期):2019-10-10

CATEGORY (品名) : CONDUCTIVE POLYMER ALUMINUM

SOLID CAPACITORS

DESCRIPTION (型号) : ULR 25V330uF (φ8X11.5)

VERSION (版本) : 01

Customer P/N : /

SUPPLIER : /

SUPPLIER			
PREPARED (拟定)	CHECKED (审核)		
赵安平	刘渭清		

CUSTOMER			
APPROVAL	SIGNATURE		
(批准)	(签名)		

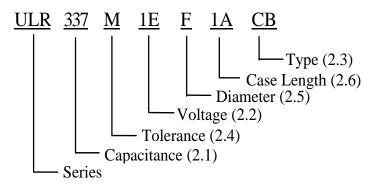
SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

\ /		
\mathbf{Y}_{-}	CC)N

SPECIFICATION			ALTERNATION HISTOR	V DEC	ODDC .		
		ULR					
Rev.	Date	Mark	Page	Contents	Purpose	Design	Cnfm
						-	

Issued-date: 2019-10-10	Name	Specification Sheet – ULR			
Version	01		Page	1	
STANDARD MANUAL					

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES


CONTENTS	
	Sheet
1. Application	3
2. Part Number System	3
3. Construction	4
4. Characteristics	5~11
4.1 Rated voltage & Surge voltage	
4.2 Capacitance (Tolerance)	
4.3 Leakage current	
4.4 Tangent of loss angle	
4.5 ESR	
4.6 Temperature characteristic	
4.7 Load life test	
4.8 Surge test	
4.9 Damp heat test4.10 Maximum permissible ripple current	
4.10 Maximum permissible ripple current 4.11 Rapid change of temperature	
4.12 Lead strength	
4.13 Resistance to vibration	
4.14 Solderability	
4.15 Resistance to soldering heat	
5. Product Marking	12
6. Product Dimensions, Impedance & Maximum Permissible Ripple Cur	rent 13
7. Application Guideline	16~17
7-1 Circuit design	
7-2 Voltage	
7-3 Sudden charge and discharge restricted	
7-4 Ripple current	
7-5 Leakage current	
7-6 Failure rate	
7-7 Capacitor insulation	
7-8 Precautions for using capacitors	. —
8. Mounting Precautions	17
9. List of "Environment-related Substances to be Controlled ('Controlled Substances')	" 18

Issued-date: 2019-10-10	Name	Specification Sheet – ULR		
Version	01		Page	2
STANDARD MANUAL				

1. Application

This specification applies to conductive polymer aluminum solid capacitors used in electronic equipment.

2. Part Number System

2.1 <u>Capacitance code</u>

Code	337
Capacitance (µ F)	330

2.2 Rated voltage code

Code	1E
Voltage (W.V.)	25

2.3 <u>Type</u>

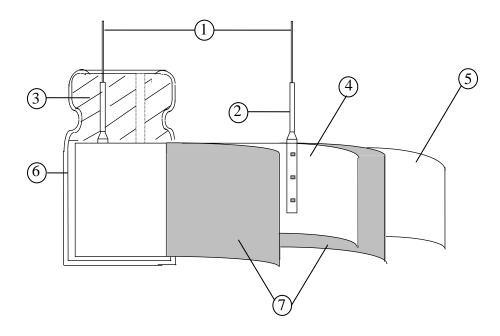
Code	СВ	
Type	Lead-Cut	

2.4 <u>Capacitance tolerance</u>

"M" stands for $-20\% \sim +20\%$

2.5 Diameter

Code	F
Diameter	8


2.6 <u>Case length</u>

"1A"=11.5mm

Issued-date: 2019-10-10	Name	Specification Sheet – ULR		
Version	01		Page	3
STANDARD MANUAL				

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be formed and carbonized, impregnated with polymer and polymerized, then will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber.

No	Component	Material
1	Lead Line	Tinned Copper Line or CP Line(Pb Free)
2	Terminal	Aluminum
3	Sealing Material	Rubber
4	Al-Foil (+)	Aluminum
5	Al-Foil (-)	Aluminum
6	Case	Aluminum
7	Electrolyte paper	Manila Hemp

Issued-date: 2019-10-10	Name	Specification Sheet – ULR		
Version	01		Page	4
	STA	ANDARD MANUAL		

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

\	-	
X-	CO	N
	99	

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature : 15°C to 35°C
Relative humidity : 45% to75%
Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55° C to 105° C.

Issued-date: 2019-10-10	Name	Specification Sheet – ULR		
Version	01		Page	5
	STA	ANDARD MANUAL		

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

	ITEM	PERFORMANCE
4.1	Rated voltage (WV) Surge voltage (SV)	WV (V.DC) 25 SV (V.DC) 28.6
4.2	Nominal capacitance (Tolerance)	Condition> Measuring Frequency : 120Hz±12Hz Measuring Voltage : Not more than 0.5Vrms Measuring Temperature : 20±2℃ Criteria> Shall be within the specified capacitance tolerance.
4.3	Leakage current	Condition> After DC Voltage is applied to capacitors through the series protective resistor (1k $\Omega \pm 10\Omega$) so that terminal voltage may reach the rated voltage. The leakage current when measured after 2 minutes shall not exceed the values of the following equation. In case leakage current value exceed the value shown in Table 3, remeasure after voltage treatment that applies the rated voltage shown in 4.1 for 120minutes at 105 °C Criteria> See Table 3
4.4	tanδ	<condition> See 4.2, for measuring frequency, voltage and temperature. <criteria> Working voltage (v) 25 tanδ (max.) 0.10</criteria></condition>
4.5	ESR	Condition> Measuring frequency : 100kHz to 300kHz; Measuring temperature:20±2°C Measuring point : 1mm max from the surface of a sealing resin on the lead wire. Criteria> (20°C)Less than the initial limit(See Table 3).

Issued-date: 2019-10-10	Name	Specification Sheet – ULR						
Version	01		Page	6				
	STANDARD MANUAL							

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

		STEP	Temperature($^{\circ}$ C)	Item	Characteristics
		1	20±2	Measure: Capacitance tanδ Impedance	
		2	-55+3	Z-55°C / 20°C	≤1.25
	.	3	Keep at 15 to 35°C for 15 minutes or more		
4.6	Temperature characteristic	4	105±2	Z105°C / 20°C	≤1.25
	Characteristic			Δ C/C 20°C	Within ±5% of step1
		5	20 ± 2	tanδ	Less than or equal to the value of item 4.4
			ition>		
		The Cavoltage	apacitor is stored at a teme for 2000 +48/0 hours .7	The result should meet	
		The Cavoltage < Crite Item	apacitor is stored at a teme for 2000 +48/0 hours .7 Peria> Perf	The result should meet ormance	the following table:
		The Cavoltage < Crite Item	apacitor is stored at a teme of 2000 +48/0 hours .7 eria> Perf citance Change With	The result should meet ormance $\pm 20\%$ of initial c	the following table:
		The Cavoltage < Crite Item	apacitor is stored at a teme of 2000 +48/0 hours .7 eria> Performance Change With Less	The result should meet ormance $\pm 20\%$ of initial case than or equal to 1.5	the following table:
1 .7	Load life	The Cavoltage <crite capa<="" item="" td=""><td>apacitor is stored at a teme of 2000 +48/0 hours .7 eria> Perf citance Change With Less item</td><td>ormance $\pm 20\%$ of initial contains than or equal to 1.5 ± 4.4 ± 1.4 ± 1.4 ± 1.4</td><td>the following table:</td></crite>	apacitor is stored at a teme of 2000 +48/0 hours .7 eria> Perf citance Change With Less item	ormance $\pm 20\%$ of initial contains than or equal to 1.5 ± 4.4 ± 1.4 ± 1.4 ± 1.4	the following table:
4.7	Load life test	The Cavoltage <crite capa="" esr<="" item="" tanδ="" td=""><td>apacitor is stored at a teme of 2000 +48/0 hours .7 eria> Performance Change Less item Less item</td><td>ormance $\pm 20\%$ of initial contains than or equal to 1.5 ± 4.4 ± 1.4 ± 1.4 ± 1.4</td><td>apacitance times of the value of times of the value of</td></crite>	apacitor is stored at a teme of 2000 +48/0 hours .7 eria> Performance Change Less item Less item	ormance $\pm 20\%$ of initial contains than or equal to 1.5 ± 4.4 ± 1.4 ± 1.4 ± 1.4	apacitance times of the value of times of the value of
4.7	life	The Cavoltage <crite capa="" esr="" item="" leaks<="" tanδ="" td=""><td>apacitor is stored at a teme of representation of the properties. Peria> Perfection Change Less item Less item age current Less</td><td>ormance $\pm 20\%$ of initial contains than or equal to 1.5 4.4 ± 1.5</td><td>apacitance times of the value of times of the value of alue of item 4.3</td></crite>	apacitor is stored at a teme of representation of the properties. Peria> Perfection Change Less item Less item age current Less	ormance $\pm 20\%$ of initial contains than or equal to 1.5 4.4 ± 1.5	apacitance times of the value of times of the value of alue of item 4.3

Issued-date: 2019-10-10	Name	Specification Sheet – ULR		
Version	01		Page	7
	STA	ANDARD MANUAL		

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

		<condition></condition>					
		Capacitor shall be applied	d the surge voltage through $1k\Omega$ resistor in series for 30 ± 5				
		seconds in every 5 minutes 30s at 15~35°C. Procedure shall be repeated 1000 times. Then					
		the capacitors shall be left	under normal humidity for 1-2hours before measurement.				
		<criteria></criteria>					
		Item	Performance				
4.8	Surge	Capacitance Change	Within $\pm 20\%$ of initial capacitance				
4.8	test	$tan\delta$	Less than or equal to 1.5 times of the value of item 4.4				
		ESR	Less than or equal to 1.5 times of the value of item 4.5				
		Leakage current	Less than or equal to the value of item 4.3				
		Attention: This test sir hypothesizing that over v	nulates over voltage at abnormal situation, and not be oltage is always applied.				
		_	sposed for 1000 ± 48 hours in an atmosphere of $90\sim95\%$ RH at stic change shall meet the following requirement.				
		Item	Performance				
		Capacitance Change	Within $\pm 20\%$ of initial capacitance				
		$tan\delta$	Less than or equal to 1.5 times of the value of item 4.4				
	Damp heat	ESR	Less than or equal to 1.5 times of the value of item 4.5				
4.9	test	Leakage current	Less than or equal to the value of item 4.3				
		Appearance	Notable changes shall not be found.				

Issued-date: 2019-10-10	Name	Specification Sheet – ULR		
Version	01		Page	8
	STA	ANDARD MANUAL		

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

		Condition> The maximum per At 100kHz and car Table 3 The combined valuerated voltage and services.	n be applied at ne of D.C volta	maximum oper	rating temperatur	re see
		Frequency Multipl		11.17	10111	100111
	Maximum	Frequency	120Hz≤ f<1kHz	1kHz≤ f<10kHz	10kHz≤ f<100kHz	100kHz≤ f<500kHz
4.10	permissible (ripple current)	Coefficient	0.05	0.30	0.70	1.00
		Applied voltage: wi Cycle number: 5 cy Test diagram: Fig.1		30±3 min 3 min 1cyc	Roon -55 30±3 min n or less	$5\pm2^{\circ}\!$
		Performance: The c	apacitors shall	meet the follow	ving specification	n after 5 cycles.
4.11	Rapid change	Item	Performar			
1	of temperature	Capacitance change		10% of initial		
		tanδ		or equal to valu	ue of item 4.4 value of item 4.3	Caftan
		Leakage current	voltage tre		value of item 4.5	(arter

Issued-date: 2019-10-10	Name	Specification Sheet – ULR						
Version	01		Page	9				
	STANDARD MANUAL							

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

		a) Lead pull strength						
		A static load force shall be applied to the terminal in the axial direction and						
		acting in a direction away from the b						
		Lead wire diameter (mm)	Load force (N)					
		$0.4 \le d \le 0.5$	5.0					
		$0.5 < d \le 0.8$	10					
		b) Lead bending						
			ical position and the weight specified in the					
4.10	.		then the capacitor is slowly rotated 90^0 to a to a vertical position thus completing bends					
4.12	Lead strength	for 2~3 seconds.	to a vertical position thas completing bends					
		The additional bends are made in the	opposite direction					
		Lead wire diameter (mm)	Load force (N)					
		0.4 <d td="" ≤0.5<=""><td>2.5</td></d>	2.5					
		0.5 < d ≤0.8	5					
			meet the following value after a) or b) test.					
		Item Perfor						
			nan or equal to the value of item4.3					
		Outward Appearance No cur	tting and slack of lead terminals					
4.13	Resistance to vibration	capacitance when the value is measured w	nm)					

Issued-date: 2019-10-10	Name	Specification Sheet – ULR					
Version	01		Page	10			
STANDARD MANUAL							

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

		T
4.14	Solderability	The capacitor shall be tested under the following conditions: Solder : Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time : 3±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall be covered with new solder.
	Resistance	A) Solder bath method Lead terminals of a capacitor are placed on the heat isolation board with thickness of 1.6±0.5mm. It will dip into the flux of isopropylaehol solution of colophony. Then it will be immersed at the surface of the solder with the following condition: Solder : Sn-3Ag-0.5Cu Soldering temperature : 260 ±5°C Immersing time : 10±1s Heat protector: t=1.6mm glass -epoxy board B) Soldering iron method Bit temperature : 400 ±10°C Application time : 3+1/-0 s Heat protector: t=1.6mm glass -epoxy board For both methods, after the capacitor at thermal stability, the following items shall be measured: Item Performance
4.15	to soldering heat	Capacitance ChangeWithin $\pm 5\%$ of initial capacitance $\tan \delta$ Less than or equal to the value of item 4.4ESRLess than or equal to the value of item 4.5Leakage currentLess than or equal to the value of item 4.3 (after voltage treatment)AppearanceNotable changes shall not be found.

Issued-date: 2019-10-10	Name	Specification Sheet – ULR					
Version	01		Page	11			
STANDARD MANUAL							

SOLID POLYMER **CAPACITOR SPECIFICATION** ULR SERIES

X-CON

Marking Sample:

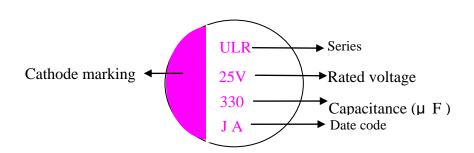
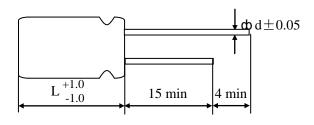
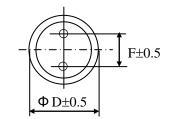


Table 1 Code F G Н 2016 2018 2019 Year 2017


- Manufactured week: see Table 2


Table 2						– Manu	facture	d year:	see Tab	le 1	
Week	1	2	3	4	5	6	7	8	9	10	11
Code	A	В	C	D	Е	F	G	Н	I	J	K
Week	12	13	14	15	16	17	18	19	20	21	22
Code	L	M	N	О	P	Q	R	S	T	U	V
Week	23	24	25	26	27	28	29	30	31	32	33
Code	W	X	Y	Z	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>E</u>	<u>F</u>	<u>G</u>
Week	34	35	36	37	38	39	40	41	42	43	44
Code	<u>H</u>	<u>I</u>	<u>J</u>	<u>K</u>	<u>L</u>	<u>M</u>	<u>N</u>	<u>O</u>	<u>P</u>	Q	<u>R</u>
Week	45	46	47	48	49	50	51	52			
Code	<u>S</u>	<u>T</u>	<u>U</u>	<u>V</u>	W	<u>X</u>	<u>Y</u>	<u>Z</u>			

J Α

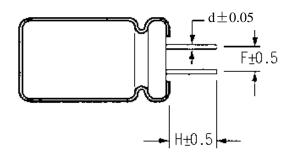
Issued-date: 2019-10-10	Name	Specification Sheet – ULR					
Version	01		Page	12			
STANDARD MANUAL							

6. Product Dimensions, Impedance & Maximum Permissible Ripple Current Unit: mm

φD	8
L	11.5
F	3.5
φd	0.6

Table 3

Working Voltage (V)	Capacitance (µ F)	Dimension (D×L, mm)	Maximum permissible ripple current at 105℃ 100kHz (mA rms)	ESR at 20°C 100kHz (mΩ)	Leakage current (µ A) 2min
25	330	8X11.5	2750	32	1650


Issued-date: 2019-10-10	Name	Specification Sheet – ULR						
Version	01		Page	13				
STANDARD MANUAL								

Unit: mm

7. Forming Dimension

Shape Code	φD	φ8
	F	3.5
СВ	Н	3.2
	d	0.6

CB Type

Issued-date: 2019-10-10	Name	Specification Sheet – ULR					
Version	01		Page	14			
STANDARD MANUAL							

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

X-CON

8.Application Guideline:

X-CON Solid Aluminum Electrolytic Capacitor should be used compliance with the following guidelines

8-1Circuit design

Prohibited Circuits for use

Do not use the capacitors with the following circuits.

- 1) Time constant circuits
- 2) Coupling circuits
- 3) Circuits which are greatly affected by leakage current
- 4) High impedance voltage retention circuits.

8-2. Voltage

1) Over voltage

The application of over-voltage and reverse voltage below can cause increases in leakage current and short circuits.

Applied voltage, refers to the voltage value including the peak value of the transitional instantaneous voltage and the peak

Value of ripple voltage, not just steady line voltage. Design your circuit so that the peak voltage does not exceed the stipulated voltage.

Over voltage exceeding the rated voltage may not be applied even for an instant as it may cause a short circuit.

- 2) Applied voltage
- ① Sum of the DC voltage value and the ripple voltage peak values must not exceed the rated voltage.
- ② When DC voltage is low, negative ripple voltage peak value must not become a reverse voltage that exceeds 10% of The rated voltage.
- ③ Use the X-CON within 20% of the rated voltage for applications which may cause the reverse voltage during the Transient phenomena when the power is tumid off or the source is switched.

8-3 Sudden charge and discharge restricted

Sudden charge and discharge may result in short circuit's large leakage current. Therefore, a protection circuits are recommended to design in when on of the following condition is expected.

- 1) The rush current exceeds 10A
- 2) The rush current exceeds 10 times of allowable ripple current of X-CON.

A protection resistor (1K Ω) must be inserted to the circuit during the charge and discharge when measuring the leakage Current.

8-4 Ripple current

Use the capacitors within the stipulated permitted ripple current. When excessive ripple current is applied to the capacitor, It causes increases in leakage current and short circuits due to self- heating. Even when using the capacitor under the Permissible ripple current, reverse voltage may occur if the DC bias voltage is low.

8-5 Leakage current

There is a risk of leakage current characteristics increasing even if the following use environments are within the stipulated range However, even if leakage current increases once, it has the characteristic that leakage current becomes small in most cases after voltage is applied due to its self-correction mechanism.

8-6 Failure rate

The main failure mode of X-CON is open mode primarily caused by electrostatic capacity drop at high temperature (i.e. wear out failure), besides random short circuit mode failures primarily caused by over voltage occurs as minor one. The time it takes to reach the failures mode can be extended by using the X-CON with reduced ambient temperature, ripple current and applied voltage.

8-7 Capacitor insulation

- 1) Insulation in the marking sleeve is not guaranteed. Be aware that the space between the case and the negative electrode Terminal is not insulated and has some resistance.
- 2) Be sure to completely separate the case, negative lead terminal, and positive lead terminal and PCB patterns with each other.

Issued-date: 2019-10-10	Name	Specification Sheet – ULR					
Version	01		Page	15			
STANDARD MANUAL							

SOLID POLYMER CAPACITOR SPECIFICATION ULR SERIES

X-CON

8-8 Precautions for using capacitors

- X-CON capacitors should not be used in the following environments.
- 1) Environments where the capacitor is subject to direct contact with salt water or oil can directly fall on it.
- 2) Environments where capacitors are exposed to direct sunlight.
- 3) High temperature (Avoid locating heat generating components around the X-CON and on the underside of the PCB), or humid environments where condensation can form on the surface of the capacitor.
 - 4) Environments where the capacitor is in contact with chemically active gases.
 - 5) Acid or alkaline environments.
 - 6) Environment subject to high-frequency induction.
 - 7) Environment subject to excessive vibration and shock.

9. Mounting Precautions

Mounting phase	Things to note before mounting	Disposal		
Before mounting	1) Used X-CON capacitors	Not reused		
	2) LC-increased X-CON capacitors	Apply them with rated voltage in series with $1K\Omega$		
	after long storage	resistance for 1 hour at the range between 60 and 70°C		
	3) X-CON capacitors dropped to the	Not reused		
	floor			
	4) Precautions on polar, capacitance	Products without remarkable polar, capacitance and rated		
	and rated voltage	voltage shouldn't be available		
	5) Precautions on the pitch between	The products can be used only when said pitch is matched		
	lead terminal and PCB			
	6) Precautions on the stress that lead	The products can be used for production only when lead		
	terminal and body of X-CON	terminal and body are not subject stress.		
	capacitors enduring in mounting			
	1) Soldering with a soldering iron	Both temperature and duration in mounting should meet		
		the requirements of out-going SPEC; no stress should be		
		allowed to occur in mounting; Don't let the tip of the		
Manager		soldering iron touch the X-CON itself.		
Mounting	2) Flow soldering	X-CON capacitor body should be prohibited to submerge		
		in melted solder; both temperature and duration in mounting should meet the requirements of out-going		
		SPEC; The rosin is not allowed to adhere to any where		
		other than lead terminal.		
After mounting	1) Precautions on mounting status	Do not tilt, bend twists X-CON; Do not allow other		
		matter touch X-CON.		
	2) Washing the PCB (available	Used immersion or ultrasonic waves to clean for a total of		
	cleaning agent 1)high quality	less than 5 minutes and the temperature be less than 60° C;		
	alcohol-based cleaning fluid such as	The conductivity, PH, specific gravity and water		
	st-100s \ 750L,750M;2) Detergents	cleaning, X-CON products should be dried with hot air		
	including substitute freon such as	(less than the maximum operating temperature).		
	AK-225AES and IPA)			

Issued-date: 2019-10-10	Name	Specification Sheet – ULR					
Version	01		Page	16			
STANDARD MANUAL							

10. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances		
	Cadmium and cadmium compounds		
Heavy metals	Lead and lead compounds		
	Mercury and mercury compounds		
	Hexavalent chromium compounds		
	Polychlorinated biphenyls (PCB)		
Chloinated	Polychlorinated naphthalenes (PCN)		
organic	Polychlorinated terphenyls (PCT)		
compounds	Short-chain chlorinated paraffins(SCCP)		
	Other chlorinated organic compounds		
D	Polybrominated biphenyls (PBB)		
Brominated .	Polybrominated diphenylethers(PBDE) (including		
organic compounds	decabromodiphenyl ether[DecaBDE])		
	Other brominated organic compounds		
Tributyltin comp	ounds(TBT)		
Triphenyltin com	pounds(TPT)		
Asbestos			
Specific azo com	pounds		
Formaldehyde			
Polyvinyl chlorid	e (PVC) and PVC blevds		
Beryllium oxide			
Beryllium coppe	er		
Specific phthalate	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)		
Hydrofluorocarbo	on (HFC), Perfluorocarbon (PFC)		
Perfluorooctane s	sulfonates (PFOS)		
Specific Benzotri	ozolo		

Issued-date: 2019-10-10	Name	Specification Sheet – ULR					
Version	01		Page	17			
STANDARD MANUAL							